
 

 

 

 

 

Software Coding Guidelines for the Regional 
Integrated Corridor Management System 

Version: 1.0 

Date: July 6, 2018 

Approval date: July 5, 2018 

  



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  ii 

 
 

 

DOCUMENT CONTROL PANEL 

File Name: R-ICMS-CG-1.0.docx 

File Location: 
\\dyn.datasys.swri.edu\Shares\Projects\10-

23368_FDOT_D5_ICMS\Deliverables\Software Coding 
Guidelines\R-ICMS-CG-1.0.docx 

Version Number: 1.0 

 Name Date 

Created By: 
Clay Westin, SwRI 5/14/2018 

Robert Heller, SwRI 5/14/2018 

Reviewed By: 

Clay Packard, FDOT/VHB July 5, 2018 

  

  

  

  

  

  

  

  

Modified By: 

Robert Heller, SwRI July 6, 2018 

  

  

  

  

  

  

  

  

  

Approved By: Clay Packard, FDOT/VHB July 5, 2018 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  iii 

Table of Contents 

 

1 Overview ......................................................................................... 1 

1.1 Document Overview ............................................................................ 1 

1.2 Project Overview ................................................................................. 1 

1.2.1 Project Identification ......................................................... 1 

1.2.2 Purpose and Scope ............................................................ 1 

1.3 Referenced Documents ...................................................................... 1 

2 Coding Standards .......................................................................... 2 

2.1 C# Coding Standard ............................................................................ 2 

2.2 Python Coding Standard .................................................................... 3 

2.3 Scala Coding Standard ....................................................................... 3 

2.4 Shell Scripting ..................................................................................... 3 

2.5 JavaScript – Angular JS ..................................................................... 3 

  



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  iv 

List of Acronyms and Abbreviations 

 

COTS .......................................................................................................... Commercial Off the Shelf 

DFE ........................................................................................................... Data Fusion Environment 

DSS ............................................................................................................ Decision Support System 

FDOT ..................................................................................... Florida Department of Transportation 

IEN ................................................................................................... Information Exchange Network 

LRU .............................................................................................................Lowest Replaceable Unit 

R-ICMS .............................................................. Regional Integrated Corridor Management System 

SRS ......................................................................................... Software Requirements Specification 

SwRI .................................................................................................... Southwest Research Institute 

TSM&O ......................................................... Transportation Systems Management and Operation 

 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  1 

1 Overview 

The purpose of a Coding Guidelines is to produce code that is easy to read and understand quickly 
and accurately. Conventions assure that the appearance of the code does not distract from 
understanding. The goal is to reduce the reading (and writing) of code to a highly mechanical 
process that minimizes creative approaches to appearance; all creativity is thereby reserved for 
the difficult tasks of understanding the needs of the user and designing a computerized system 
that meets those needs effectively.  

1.1 Document Overview 

This document is organized into sections, each representing guidelines for a particular computer 
programming language that will be used to implement some portion of the R-ICMS system. For 
those guidelines that will follow established “industry standards” a reference to where the 
guideline can be found is provided. 

1.2 Project Overview 

1.2.1 Project Identification 

Project Name: Central Florida Regional Integrated Corridor Management System. 
Agreement Number: BE521 
Financial Project Identification: 436328-1-82-01 
Federal Aid Project Number: Not Applicable. 

1.2.2 Purpose and Scope 

The R-ICMS will consist of, but not be limited to; commercial off-the-shelf (COTS) modeling 
software (provided by the DEPARTMENT), a custom-built Decision Support System (DSS), a 
custom- built Information Exchange Network (IEN) subsystem that includes dashboards and 
other user interfaces to the system, and a Data Fusion Environment (DFE) to host data sources 
for both the R-ICMS and other external users and applications. 

1.3 Referenced Documents 

The following documents, of the exact issue shown, form a part of this document to the extent 
specified herein. In the event of a conflict between the contents of the documents referenced 
herein and the contents of this document, this document shall be considered the superseding 
document. 

Standard Written Agreement, 
Agreement Number BE521 

FDOT District 5 Procurement. A copy is maintained on the 
Project SharePoint Site. 

ITN-DOT-16-17-5004-ICMS 
FDOT District 5 Procurement. A copy is maintained on the 
Project SharePoint Site. 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  2 

Systems Engineering and ITS 
Architecture (Topic No 750-040-003) 

http://www.dot.state.fl.us/proceduraldocuments/procedures.
shtm 

R-ICMS-PSEMP-1.0.docx FDOT District 5 

Python Coding Standard https://www.python.org/dev/peps/pep-0008/ 

Python Docstring Standards https://www.python.org/dev/peps/pep-0257/ 

Scala Coding Standards https://docs.scala-lang.org/style/ 

Shell Scripting https://google.github.io/styleguide/shell.xml 

JavaScript -- Angular JS https://angular.io/guide/styleguide 

2 Coding Standards 

SwRI will follow coding standards when developing code for the R-ICMS project.  In general, the 
team shall establish any standard / guideline as deemed appropriate that is not available from 
the coding styles referenced below and shall be updated in the coding standards document. 
Similarly, any deviations from the standards shall also be added to the document after obtaining 
proper approvals from the project manager. 

2.1 C# Coding Standard 

The SwRI coding standard in use during the development of the SunGuide system is in 
Attachment A of this document. By using the same standard as that used by the SunGuide effort, 
the code developed for the R-ICMS project will have the same style as that code base.  

In addition to the coding standards, SwRI uses ReSharper plug-in for Visual Studio. ReSharper 
assists development of C# projects with continuous code analysis for errors and suggestions for 
code optimizations.  

 ReSharper also allows for customizations to the suggestions to include parts of the coding 
standard. For instance,  

 ReSharper can look at method names to ensure they use camel case (or another method 
consistent with the coding standard) and flag the method if the method name does not 
meet the standard.  

 ReSharper also checks comments of methods to make sure they exist and also spell checks 
all comments. Suggestions for changes are made known through a vertical bar next to the 
scroll bar that contains tick marks where suggestions are made in the file. These marks 
are color coded so that a user can open a file and easily identify critical comments (e.g. 
compilation errors) from suggestions (e.g. comment had spelling mistake).  

 ReSharper also helps clean up code by flagging unused methods and segments of code 
that are unreachable or unnecessary (i.e. a function has an embedded return statement 
so the rest of the code will never be executed). 

http://www.dot.state.fl.us/proceduraldocuments/procedures.shtm
http://www.dot.state.fl.us/proceduraldocuments/procedures.shtm
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://docs.scala-lang.org/style/
https://google.github.io/styleguide/shell.xml
https://angular.io/guide/styleguide


Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  3 

2.2 Python Coding Standard 

SwRI will use the Python coding standard as described in “PEP 8 – Style Guide for Python Code” 
that may be found at the following URL: 

https://www.python.org/dev/peps/pep-0008/ 

This standard is the de-facto code style guide for Python. A high quality, easy-to-read version of 
PEP 8 is also available at pep8.org. In addition, the project shall also use the “PEP 257 – Docstring 
Conventions” for docstring conventions which is available at the following URL: 

https://www.python.org/dev/peps/pep-0257/ 

Docstrings are string literals that occur as the first statement in a module, function, class, or 
method definition. Such a docstring becomes the __doc__ special attribute of that object. 

2.3 Scala Coding Standard 

SwRI will use the coding style guidelines published by Scala Project at the following URL: 

https://docs.scala-lang.org/style/ 

Along with the coding style guidelines quoted above, the project shall also adopt best practices 
described at the following URL. 

https://github.com/databricks/scala-style-guide 

2.4 Shell Scripting 

There are various shell scripting standards available depending upon the tasks/projects types, so 
SwRI will be using google shell style guides at the following URL. 

https://google.github.io/styleguide/shell.xml 

2.5 JavaScript – Angular JS 

JavaScript programming is different than a procedural programing languages like C#. Java, etc., 
so it is important to implement JavaScript code using the suggested style guidelines below. SwRI 
will be using Angular JS style guide that may be found at the following URL 

https://angular.io/guide/styleguide 

https://www.python.org/dev/peps/pep-0008/
http://pep8.org/
https://www.python.org/dev/peps/pep-0257/
https://docs.scala-lang.org/style/
https://github.com/databricks/scala-style-guide
https://google.github.io/styleguide/shell.xml
https://angular.io/guide/styleguide


Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx 

Attachment A 

Coding Standard for C Sharp (C#) 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-1 

1. Introduction 

1.1. Purpose 

This document details the standards and practices for the development of software in the C Sharp 
(C#) language. The standards are designed to accomplish several goals: 

 Provide a uniform look and feel to all software developed by a group. 

 Make it easier for developers to review each other’s code. 

 Prevent the introduction of defects through the use of best practice structural and 
syntactic conventions. 

 Make it easier to find and fix defects. 

 Make it more efficient for developers to switch between projects when resource 
reallocations are required. 

 Improve software portability and reusability. 

 Improve long term maintenance. 

The majority of the time and money spent on production software is spent on maintenance. Since 
maintenance is a future activity, the software written today is a means of communicating ideas 
and information to some future programmer, perhaps even the original author. Therefore, the 
primary goal when writing software must be to produce code that is correct, easy to read and 
easy to maintain. 

1.2. Scope 

This standard is applicable to all software developed in C#, regardless of whether the result is for 
a Windows desktop application, Web Service, Web site, etc. 

1.3. Variances 

For a specific project, there may be special reasons that require deviation from these standards. 
In such cases, it is the project manager’s responsibility to define the deviations and to inform all 
project team members. This must be documented in a memo or other written format that can 
become part of the project records. 

2. Naming Conventions 

The naming scheme is one of the most influential aids to understanding the logical flow of an 
application. A name should tell “what” rather than “how.” By avoiding names that expose the 
underlying implementation, which can change, a layer of abstraction that simplifies the 
complexity is preserved. For example, use “getNextStudent()” instead of 
“getNextArrayElement()”. A tenet of naming is that difficulty in selecting a proper name may 
indicate a need to further analyze or define the purpose of an item. Make names long enough to 
be meaningful, but short enough to avoid verbosity. Programmatically, a unique name serves 
only to differentiate one item from another. Expressive names function as an aid to a human 
reader; therefore, it makes sense to provide a name that a human reader can comprehend. 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-2 

However, be certain that the chosen names are in compliance with the C# language’s rules and 
standards. 

2.1 Method Names 

The common code based used by projects utilizes camel casing to allow a programmer to easily 
distinguish between code from Microsoft libraries and internal code. Individual processes may 
either use camel casing (“getNextStudent”) or the Microsoft standard of capitalizing each letter 
of words (“GetNextStudent”). Naming must be consistent within a process. When maintaining 
code, continue the naming style already in use. 

Do: 

• Use the verb-noun method for naming routines that perform some operation on a given 
object, such as “calculateInvoiceTotal()”. 

• Ensure method overloads perform similar operations. 
• When naming methods, include a description of the value being returned, such as 

“getCurrentWindowName()”. 
• When naming methods whose operation includes specific units of measure, include the 

type of units, such as “computeDistanceInMeters()”. 
• Make names descriptive without excessive length. 

Don’t: 

• Use elusive names that are open to subjective interpretation, such as “AnalyzeThis()”. 
Such names contribute to ambiguity more than abstraction. 

• Include class names in the name of class properties, such as “Book.BookTitle”. Instead, 
use “Book.Title”. 

2.2 Variable Names 

Do: 

• Append computation qualifiers (Avg, Sum, Min, Max, Index) to the end of a variable name 
where appropriate. 

• Use complimentary pairs in variable names, such as min/max, begin/end, and open/close. 
• Use camel casing (“documentFormatType”) where the first letter of each word except the 

first is capitalized. 
• Use boolean variable names containing Is which implies Yes/No or True/False values, such 

as “fileIsFound”. 
• Use a meaningful name even for short-lived variables. 
• Include units of measure for variables with a specific unit of measure, such as 

“distanceInMeters”. 

Don’t: 

• Use mysterious names that are open to subjective interpretation, such as “xxK8.” 
• Use terms such as Flag when naming status variables, which differ from Boolean variables 

in that they may have more than two possible values. Instead of “documentFlag”, use a 
more descriptive name such as “documentFormatType”. 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-3 

• Use single-letter variables names, other than for short (less than three lines) loop 
indexing. 

• Use literal numbers or literal strings, such as for ( i = 1; i < 7; i++ ), where 7 means nothing 
to someone reading the code. Instead, use named constants, such as for ( i = 1; i < 

• NUM_DAYS_IN_WEEK; i++ ) for ease of maintenance and understanding. 
o There are exceptions, the values 0, 1 and null can nearly always be used safely. 
o Often 2 and -1 can also be used. 
o Strings intended for logging or tracing are exempt from this rule. 

2.3 Graphical User Interface (GUI) Widgets 

GUI controls should be named to reflect their type. This makes the code easier to understand 
and promotes future maintainability. The following standard is recommended for naming 
controls. Controls not expressly cited in this table should be named in a similar fashion. 

Control Prefix Example 

TextBox txt: txtName, txtPassword 

Label lbl: lblErrorMsg 

ListBox list: listPrescriptions 

ComboBox combo: comboNames 

ListView lvw: lvwRxData 

TreeView tree: treePatients 

Button btn: btnPrint 

Controls that are static (i.e., never referenced in the code), such as a GroupBox label that never 
changes, need not follow this convention. 

2.4 Class Names 

Class names should be Pascal-cased and should be descriptive of the class’ intended purpose. 

• CacheManager 
• XmlSerializer 

When using Visual Studio, always change the default name assigned by the Integrated 
Development Environment (IDE). For example, change Form1 to ConfigurationForm and Service1 
to SvcEmr. 

In many cases, the .NET development environment allows the declaration of instances of remote 
classes in the same manner as a local instance of a “normal” class. This is a powerful feature; 
however, it should be made apparent that the instance is “not normal.” Additionally, an 
“interface” is a special type of object. Use the following prefixes for special types of classes: 

Prefix Example 

“I” for interfaces IAsyncResult 

“Svc” for web service classes SvcEmr, SvcPharmacy 

“RemObj” for remotable objects RemObjWaveManager 

 

Miscellaneous class usage information: 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-4 

• Base classes are a useful way to group objects that share a common set of functionality. 
Base classes can provide a default set of functionality, while allowing customization 
through extension. 

• Minimize the use of abbreviations, but use those that are created consistently. An 
abbreviation should have only one meaning. For example, if “min” is used to abbreviate 
minimum, do so everywhere and do not use “min” to also abbreviate minute. 

• File and folder names, like procedure names, should accurately describe their purpose. 
• Avoid reusing names for different elements, such as a routine called “ProcessSales()” and 

a variable called “iProcessSales”. 
• Avoid homonyms, such as write and right, when naming elements to prevent confusion 

during code reviews. 
• When naming elements, avoid commonly misspelled words. Also, be aware of differences 

that exist between regional spellings, such as color/colour and check/cheque. 
• Avoid typographical marks to identify data types, such as “$” for strings or “%” for 

integers. 

3. Code Format 

3.1 Namespaces 

Namespaces should be in lower case and according to the following pattern: 

gov.its.<process>.<folder>.<subfolder> 

For example, for LCS, the base classes are contained in the “gov.its.lcs” namespace. Folders can 

be within that namespace such as “gov.its.lcs.handlers”. For classes in these types of 
namespaces, the project should contain corresponding folders. 

3.2 Methods 

Since code tends to be viewed one screen at a time, a single method should fit on one screen, if 
possible. Very rarely should a method size exceed two printed pages (including comments). Every 
C# method shall have a standard method header. This leverages the eXtensible Mark-up 
Language (XML) Documentation feature in Visual Studio for creating code comment reports as in 
this example: 

/// <summary> 

/// Clean up any resources being used. Stops and releases timer resources 

/// </summary> 

/// <param name=”disposing”></param> 

/// <returns>True if no error occured or False if an error occured.</returns> 

protected override bool Dispose( bool disposing ) 

When calling a method, do not put each of the arguments on a separate line. Where possible, 
the procedure call should occupy a single line. For procedure calls with a lot of arguments, it is 
acceptable to split the line. 

3.3 Class Format 

 Classes must have class documentation and a copyright header at the top of the file. 

 Sample copyright headers should be provided by the project manager. 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-5 

 All fields for a class should be at the top of the class. 

 Use regions to encapsulate variables, constructors and methods. 

 Typical use of regions would be: 

public class MyClass 

{ 

#region private member variables 

#endregion private member variables 

 

#region protected member variables 

#endregion 

 

#region constructors 

public MyClass() 

{ 

} 

#endregion constructors 

 

#region public methods 

#endregion 

 

#region protected methods 

#endregion 

 

#region public methods 

#endregion 

} 

 For methods, regions may be used differently in order to group by functionality. For 
instance: 

#region travel time calculations 

#endregion travel time calculations 

 

#region aggregators of data 

#endregion aggregators of data 

 

#region configuration of links 

#endregion configuration of links 

 Adding the region name to the “#endregion” is useful when scanning through a code 
file. 

3.4 Indentation and Braces 

Indentation, spacing, and other formatting rules are enforced using StyleCop 
(http://code.msdn.microsoft.com/sourceanalysis). Settings can vary on a per project basis. The 
project should provide a sample Settings.SourceAnalysis file containing the appropriate settings 
which can be ignored. The settings file only provides the exceptions to rules set in StyleCop. 

• The standard indent level is four spaces. Make sure editors insert spaces when 
indenting, not tab characters. 

• For switch statements, the CASE entries shall be at the same level as the switch. 
• As a general rule, methods should contain no more than four levels of indentation. 
• Line up braces on the left. Always use braces, even for single lines of code following if, 

else, for, or while constructs. This saves confusion and mistakes, and it does not cause 
the compiler to generate any extra code. 

WRONG: 

while( ... ) { 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-6 

... 

} 

RIGHT: 

while( ... ) 

{ 

... 

} 

• Even though C# allows a looping or conditional construct within a single body line to 

forego the brackets {}, brackets should always be used. This reduces the potential for 

errors if another line of code is added later and makes the code more readable. 
WRONG: 

while ( true ) 

DoWork(); 

RIGHT: 

while ( true ) 

{ 

DoWork() 

} 

3.5 Line Length 

Comment and code lines should not extend too long. Previously, this was 80 characters, but with 
C# more verbose and screens having higher resolutions, this can vary. Now, this is more 
subjective. 

3.6 Comments 

• Use double slashes for comments. This precludes having to use an ending */. 

// This is a comment block 

• Use // TODO to mark places where code still needs to be implemented, tested or 
modified. 

• Indent comments to the same level as the code to which it applies. 
• Under most conditions, do NOT put comments at the end of a code line. The comment 

should immediately precede the lines to which it applies. 
• Do not use stars at end of comments (box format). 
• Use XML tags for documenting types and members. Example: 

/// <summary> 

/// Initializes a new instance of the <see cref="DaHandler"/> class. 

/// </summary> 

The following Commenting Checklist was taken from Code Complete: A Practical Handbook of 
Software Construction, 1st Edition by Steven C. McConnell (1993). 

• Does the source listing contain most of the information about the program? 
• Can someone pick up the code and immediately begin to understand it? 
• Do the comments explain the codes intent or summarize what the code does, rather than 

just repeating the code? 
• Has tricky code been re-written rather than commented? 
• Are the comments up to date? 
• Are comments clear and correct? 
• Does the commenting style allow comments to be easily modified? 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-7 

• Do the comments focus on why rather than how? 
• Do the comments prepare the reader for the code to follow? 
• Does every comment count? Have redundant, extraneous, and self-indulgent comments 

been removed or improved? 
• Are surprises documented? 
• Have abbreviations been avoided? 
• Is the distinction between major and minor comments clear? 
• Is code that works around an error or undocumented feature commented? 
• Are units on data declarations commented? 
• Are the ranges of values on numeric data commented? 
• Are coded data meanings commented? 
• Are limitations on input data commented? 
• Are flags documented to the bit level? 

3.7 Spacing 

Use spaces for clarity. If necessary, sacrifice space for readability. Again, these settings can be set 
per project using StyleCop. 

OK: 

for( i = 1; i < 5; i++ ); 

NOT: 

for(i=1;i<5;i++); 

3.8 Miscellaneous 

• Only use “this.” to prevent name clashing (if the method parameter matches a class field). 
• Avoid multiple or conditional return statements. 
• If implementing one of the Object methods (e.g., “Equals”, “GetHashCode”), it is required 

that both must be implemented. Also override when implementing the “IComparable” 
interface. 

• Avoid the use of exceptions as flow control. Exceptions should be thrown in exceptional 
circumstances. 

• Always log that an exception is thrown. 
• Code reviews are completed using the checklist in Appendix C. When developing code, 

the checklist should be gone over to ensure compliance. 

4. Coding Practices 

4.1 Clarity 

Write code for clarity and understanding. Leave the optimization for the compiler. Do not try to 
guess where performance “bottlenecks” will occur. If it is later decided that the code runs too 
slowly, performance tools can help identify the true “bottlenecks.” Use parenthesis to make code 
clearer (but do not get carried away). If the order of operation is not intuitively obvious, use 
parenthesis. 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-8 

4.2 Object Scope 

In a class definition, all member variables shall be private or protected. Access to member 
variables by anyone other than a derived class shall be through either member methods or the 
get set accessors. 

public UddiKeyCollection Keys 

{ 

get 

{ 

return this.keys; 

} 

set 

{ 

this.keys = value; 

} 

} 

4.3 Constants 

A constant is an expression that can be fully evaluated at compile time. Constants should be all 
upper case with underbars: 

public const int MAX_QUEUE_ITEMS = 100; 

The same holds true for constant enumerations. 

4.4 Flags 

Flags are only to be used to mark events or options. Not counting the flag initialization, there 
should only be one place the flag is set, and one place the flag is cleared. It can be checked any 
number of places. If multiple flags are required to control the logical flow of a process, and these 
flags are set or cleared in more than one place, then what is really present is state processing. 
Define a state variable, constants for the various states, procedures for entering (and/or exiting 
if necessary) the defined states, and the program logic for each event in each state. 

4.5 Data Types 

The system namespace is the root namespace for fundamental types in the .NET Framework. This 
namespace includes classes that represent the base data types used by all applications: “Object” 
(the root of the inheritance hierarchy), “Byte”, “Char”, “Array”, “Int32”, “String”, and so on. Many 
of these types correspond to the primitive data types that C# uses. When writing code using .NET 
Framework types, use the C# corresponding keyword when a .NET Framework base data type is 
expected. The following table lists some of the value types the .NET Framework supplies, briefly 
describes each type, and indicates the corresponding type in C#. The table also includes entries 
for the Object and String classes, for which C# has corresponding keywords. 

Category Class 
Name 

Description C# Data Type 

Integer Byte An 8-bit unsigned integer. byte 

SByte An 8-bit signed integer. 

Not CLS compliant. 

sbyte 

Int16 A 16-bit signed integer.  short 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-9 

Int32 A 32-bit signed integer.  int 

Int64 A 64-bit signed integer.  long 

UInt16 A 16-bit unsigned integer. 

Not CLS compliant. 

Ushort 

UInt32 A 32-bit unsigned integer. 

Not CLS compliant. 

Uint 

UInt64 

 

A 64-bit unsigned integer. 

Not CLS compliant. 

ulong 

Floating point Single A single-precision (32-bit) floatingpoint number. float 

Double A double-precision (64-bit) floating-point 
number. 

double 

Logical Boolean A Boolean value (true or false).  bool 

Other Char A Unicode (16-bit) character.  char 

Decimal A 96-bit decimal value.  decimal 

IntPtr A signed integer whose size depends on the 
underlying platform (a 32-bit value on a 32-bit 
platform and a 64-bit value on a 64-bit platform). 

IntPtr 

No built-in type. 

UIntPtr An unsigned integer whose size depends on the 
underlying platform (a 32- bit value on a 32-bit 
platform and a 64-bit value on a 64-bit platform). 

Not CLS compliant. 

UIntPtr 

No built-in type. 

Class objects Object  The root of the object hierarchy.  object 

String An immutable, fixed-length string of Unicode 
characters. 

string 

4.6 GUIs 

C# GUIs will be consistent with either those of the SunGuide system. Guidance for use of and 
controls can be found in the MSDN. Furthermore, GUIs will be presented to the FDOT during the 
appropriate design reviews for final approval. 

4.7 Generated Code 

Code that is automatically generated from the Visual Studio development environment, or other 
tools such as the XML Schema Definition Language (XSD) utility, does not have to comply with 
this coding standard. Do not attempt to change generated code, in most cases modifying the 
code breaks it. StyleCop can be made to ignore these files by adding a tag at the top of the file. 

4.8 XML 

Since XML is tightly integrated into C# and the .NET framework, it is briefly addressed here. 



Software Coding Guidelines for the Regional Integrated Corridor Management System 

R-ICMS-CG-1.0.docx  A-10 

• When designing XML schema, XSD should be used. Document Type Definitions (DTD) will 
not be used. 

• XML tags should be all lower case where possible. This convention does not apply when 
generating schema using automated tools. For instance, generating a DataSet schema 
from an existing database table. 

• XML documents should be indented for readability. Where possible, build a hierarchical 
structure of data types by including multiple schema of simpler types. 

• When creating XML for transmission, create in an appropriately indented format. This will 
allow the text to be human readable without needing to be reformatted. 


